skip to main content


Search for: All records

Creators/Authors contains: "Rodriguez, Andres"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pulse oximetry represents a ubiquitous clinical application of optics in modern medicine. Recent studies have raised concerns regarding the potential impact of confounders, such as variable skin pigmentation and perfusion, on blood oxygen saturation measurement accuracy in pulse oximeters. Tissue-mimicking phantom testing offers a low-cost, well-controlled solution for characterizing device performance and studying potential error sources, which may thus reduce the need for costly in vivo trials. The purpose of this study was to develop realistic phantom-based test methods for pulse oximetry. Material optical and mechanical properties were reviewed, selected, and tuned for optimal biological relevance, e.g., oxygenated tissue absorption and scattering, strength, elasticity, hardness, and other parameters representing the human finger’s geometry and composition, such as blood vessel size and distribution, and perfusion. Relevant anatomical and physiological properties are summarized and implemented toward the creation of a preliminary finger phantom. To create a preliminary finger phantom, we synthesized a high-compliance silicone matrix with scatterers for embedding flexible tubing and investigated the addition of these scatterers to novel 3D printing resins for optical property control without altering mechanical stability, streamlining the production of phantoms with biologically relevant characteristics. Phantom utility was demonstrated by applying dynamic, pressure waveforms to produce tube volume change and resultant photoplethysmography (PPG) signals. 3D printed phantoms achieved more biologically relevant conditions compared to molded phantoms. These preliminary results indicate that the phantoms show strong potential to be developed into tools for evaluating pulse oximetry performance. Gaps, recommendations, and strategies are presented for continued phantom development.

     
    more » « less
  2. Commercially available wearable devices have been used for fitness and health management and their demand has increased over the last ten years. These “general wellness” and heart-rate monitoring devices have been cleared by the Food and Drug Administration for over-the-counter use, yet anecdotal and more systematic reports seem to indicate that their error is higher when used by individuals with elevated skin tone and high body mass index (BMI). In this work, we used Monte Carlo modeling of a photoplethysmography (PPG) signal to study the theoretical limits of three different wearable devices (Apple Watch series 5, Fitbit Versa 2 and Polar M600) when used by individuals with a BMI range of 20 to 45 and a Fitzpatrick skin scale 1 to 6. Our work shows that increased BMI and skin tone can induce a relative loss of signal of up to 61.2% in Fitbit versa 2, 32% in Apple S5 and 32.9% in Polar M600 when considering the closest source-detector pair configuration in these devices.

     
    more » « less
  3. Abstract

    microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health.

     
    more » « less
    Free, publicly-accessible full text available February 5, 2025
  4. null (Ed.)